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LONG-TERM GOALS 
 
We aim to investigate advancing the state of the art of detection, classification and localization (DCL) 

in the field of bioacoustics.  The two primary goals are to develop transferable technologies for 

detection and classification in: (1) the area of advanced algorithms, such as deep learning and other 

methods; and (2) advanced systems, capable of real-time and archival and processing.  This project 

will focus on long-term, continuous datasets to provide automatic recognition, minimizing human time 

to annotate the signals.  Effort will begin by focusing on several years of multi-channel acoustic data 

collected in the Stellwagen Bank National Marine Sanctuary (SBNMS) between 2006 and 2010.  Our 

efforts will incorporate existing technologies in the bioacoustics signal processing community, 

advanced high performance computing (HPC) systems, and new approaches aimed at automatically 

detecting-classifying and measuring features for species-specific marine mammal sounds within 

passive acoustic data.  

OBJECTIVES 
 

This project represents a high-level, integrative ‘bench mark’ study aimed at automated detection-

classification of acoustic objects for various marine mammals in a variety of ocean areas.  This effort 

will focus on an existing acoustic dataset located in the SBNMS area, collected during an earlier 

National Oceanic Partnership Program (NOPP) grant.  This current work will focus on investigating 

basic and applied acoustic detection-classification research, converting data products into white 

papers, reports and professional publications.  We will also identify key technology areas, developing 

concepts for real time detection, classification and localization.  In addition to publications, outputs 

from this work will include working prototypes and tools; developed using a maturity model based on 

DARPA 6.1 and 6.2 processes, for basic and applied work respectively.   

APPROACH 
 

This effort will develop advanced methods for exploring passive acoustic data, specifically new 

approaches for detection-classification (deep learning) and advanced technology (high performance 

computing).  To facilitate this work, Cornell has assembled an Integrated Research Team (IRT) of 

scientists, biologists and engineers, Table 1.  Members of this work are highly qualified research 

professionals, with experience ranging from acoustical engineering, signal processing and machine 

learning to biology.  Coordinating the efforts for this work is, (PI) Dr. Peter Dugan and, (co-PI), Dr. 

Christopher Clark.  Joined on the team, is (co-PI) Dr. Yann LeCun, New York University (NYU) and 

(co-PI) Dr. Sofie Van Parijs, Northeast Fisheries Science Center (NEFSC), Woods Hole.  Specialized 

talents for this research are broken down into three main groups.  Dr. Yann LeCun and various 

academics at New York University, with a focus on basic research and development for applying deep 

learning technologies to detect and classify underwater sounds in real-time.  Dr. Peter Dugan will lead 

the Machine Learning Systems Integration Team at Cornell University.  This group will leverage 

experience in applied recognition systems and focus development and integration tasks on advanced 

technologies for detection-classification.  Dr. Dugan will leverage four senior consultants, Dr. Harold 

Lewis, Dr. Mark Fowler, Katie Vannicola and Dr. Rosemary Paradis; with expertise as senior 

professionals and faculty in the areas of Computational Intelligence, Signal Processing, Speech 

Processing and Neural Networks, respectively.  Dr. John Zollweg, Marian Popescu, Dr. Yu Shiu, 

Mohammad Pourhomayoun, Katie Vanicolla and Adam Mikolajczyk will form a sub-group focused on 
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HPC technology and software development.  The Biology Team facilitates data analysis and biological 

direction; Dr. Christopher Clark will provide expertise and leadership in marine mammal bioacoustics, 

along with co-PI Dr. Sofie Van Parijs. Together, Cornell, NYU and NEFSC will perform basic and 

applied research, and coordinate publication efforts in engineering, biology, and systems operational 

research.    

Work Completed 
 

Project funding is being provided from two sources, ONR and NFWF.  A project kick off meeting was 

held at NYU in October 2011.  Since funding from both parties was not established during FYI 2011, 

NYU is not obligated in this report.  Cornell University utilized 30 days of funding between October 

and December 2011, during this time the team devoted resources to the development of the DCL 

hardware and software infrastructure that will be used throughout this project.  Specifically the high 

performance-computing platform (HPC) was developed, called the HPC-Acoustic Data Accelerator, or 

HPC-ADA for short.  The HPC-ADA was designed based on fielded systems [1-4, 6] that offer a 

variety of desirable attributes, specifically dynamic resource allocation and scalability.  The HPC-

ADA platform has been proven in three different modes of operation, ranging from stand-alone to 

client server based.  The system is operational and supporting various contracts, Table 7, and the team 

has demonstrated this unit to the Board of Directors at the Cornell, Lab of Ornithology.  Official kick-

off started in June 2012, and the Cornell team has mobilized the initial datasets from the Stellwagen 

Bank National Marine Sanctuary (SBNMS)
1
.  Initial development and integration of existing 

recognition algorithms has been performed, and preliminary results are summarized herein. 

 

From October 2011 to December 2011, the team focused efforts on developing a DCL system that 

processes archival data as fast as possible.  Development started by building the DeLMA-HPC 

software (Detection cLassificaiton for MAchine learning - High Peformance Computing). The 

software package was designed to utilize parallel and distributed processing for running recognition 

and other advanced algorithms.  DeLMA software is a custom developed Matlab module which plugs 

into Sedna [7] and is designed using a parallel architecture
2
, allowing existing algorithms to distribute 

to the various processing nodes with minimal changes to their structure.  An advanced hardware 

platform (prototype) was also designed and constructed for high performance computing (HPC) 

applications,  

Figure 1.  Various hardware components were assembled, including the rack unit, power supply 

modules, multi-core servers and a, custom designed, high speed network attached storage (NAS) unit.  

HPC-ADA uses commercially available computers that have multiple processor cores (not GPU’s).  

The system was built as a self contained unit, using a mobile rack.  HPC-ADA is capable of 

dynamically allocating resources to single or multiple users with a range of connectivity.  Software is 

Matlab based, specially designed to run advanced algorithms to process audio at high speeds.  

Currently the HPC-ADA hardware contains 84 processors, and is scalable to larger numbers.  The 

basic server system and I/O paths are shown in  

Figure 2.   Several processing configurations were considered based on the location of the data; 

different combinations of distributed and local models were tried.  In the archival mode, the DeLMA 

software allows sounds to be cached locally to the processors, reducing dependency on large network 

resources.  To elliminate possible bottlenecks, a high speed network attached storage (NAS
3
) device 

                                            
1 Data recorded using various arrays of Marine Autonomous Recording Units (MARUs). 
2 Model used for archival data, a different model will likely be used for real-time audio. 
3 NAS units are commonly available, for this work our custom designed unit will leverage smart processing for later research and development efforts.  
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was developed.  Prototypes were created for each phase of HPC-ADA development.  Full system 

analysis and design is beyond the scope of this research, but some simple metrics, such as throughput 

and resource utilizations have been gathered to baseline processing efficiency, performance shown in 

Table 6.  It is expected that sound data will be the largest resource required to be manage by the DCL 

system. To address these requirements, data and control information were treated as virtual-separated 

network channels,  

Figure 2.  The team tested out various distributed processing models by assigning detection-

classification processing to each worker, which is associated with a unique ADA accelerator.  The 

ADA computer is designed to run as if it where a single machine using one or many hardware units.  

In some configurations, latency between the worker and the sound source would cause the thread to 

time out, producing an error.  These relationships were identified and elliminated through software and 

hardware modifications.  The “head node” provided control over allocating resources to the ADA 

accelerators, providing scalability for the system.  The “head node” manages dynamic resource 

allocation, allowing the operator to assign computing resources based on the detection-classificaiton 

job using a standard software interface.   For this work, several processor configurations were tried, 

these are shown later in the report in Table 6 and Table 7.  The software is a mixture of commercial off 

the shelf (COTS), and a series of custom libraries written in MATLAB 2010a-2012a.  User interfaces 

were written using the Matlab Java tools, and a source code prototype was developed to test operation 

in three different modes; these include (1) standalone computer mode, (2) console HPC-ADA 

computer mode or (3) a client server mode, (modes 1 and 2 together), see  Figure 4.   

 

Three configurations for the DCL system were tested for functionality, as shown in Figure 4.  The 

client application was tested to run on any machine that contained the visual runtime, and the three 

basic concepts of the operation were explored.  Each configuration required three software packages, 

the standard Matlab runtime, Sedna and DeLMA.  Sedna provides core algorithms for parallel 

processing and DeLMA contains the tools required to interface the autodetection algorithms to the 

distributed processing hardware for execution on multiple cpu’s. Case 1:  Serial or Parallel Model, a 

portable, standalone mode;  capable of being used by a single computer in the field or connected to a 

network.  Case 2
4
:  Parallel or Distributed Model, a configuration that is able to run on the HPC server 

platform with access to local or distributed resources (cpu’s and memory).  Case 3:  Local or Remote 

Distributed Model is the most complex setup intended to support a laboratory of users.  Case 3 is 

designed to support centralized data and hardware resources and offers the ability to allow multiple 

users to connect through a local, or remote, network.  This configuration would be ideal for a 

laboratory of users requiring accessing to a powerful collection of cpu’s and large datasets.  The 

standalone computer contains the same packages as case 1 and 2, but in addition a network connection 

provides communication to the server HPC-ADA machine
5
.  In all cases the DeLMA package is co-

resident on the client machine(s) and the HPC-ADA unit.  Pull down menus in the DeLMA software 

(not shown) allow the user to switch between using the local computer or the network HPC-ADA 

machine; a performance comparison to local client machine and the HPC-ADA is shown in Table 6.   

 

Between Januray 2012 and May 2012, the project was placed on hold due to funding delays.  During 

this time, BRP had several projects that required detection classification work.  The team adapted 

several existing algorithms to the HPC platform.  These included: (1) the multi-stage right whale 

algorithm, isRAT [8], (2) a basic spectrogram correlation algorithm from xBAT using a matched 

image approach called the data-template [9], configured to detect fin whale, bryde’s whale and 

                                            
4 Case 2, the HPC-ADA computer contains the same packages as case 1 with the exception that the DeLMA-client package is replaced by the DeLMA-

Server package. 
5 Note: cloud based or wide sense computing applications will require an externally facing head-node.  Only intranet has been tested to date. 
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mechanical noise, and (3) and a new segmentation-recognition algorithm, called Acoustic 

Segmentaiton Recognition Algorithm (or ASR Algorithm).  The new ASR algorithm was based on 

work from [3, 5, 6, 10, 11] and successfully used to detect various pulse train signatures including 

seismic air gun, minke whale, fin whale and sperm whale.  A summary of the projects, which were ran 

using a single user, case 2 and case 3 configuration, is shown in Table 7. 

 

From June to September 2012 the project focused on coordinating the mobilization of nearly four 

years of acoustic data recorded during an earlier NOPP project.  Data spanned from 2006-2010 using 

several arrays located in SBNMS.  A summary of the NOPP data is provided in Table 2. These data 

sets contain a variety of anthropogenic noise sources, such as commericial vessels, fishing boats, a 

variety of whales (fin, humpback minke, right, and sei whales) and fish (haddock and cod).  The focus 

was to explore the data using the new ASR algorithm.  Specifically the ASR algorithm was designed 

to interface with the HPC-ADA (Figure 1) system by grouping the output events as show in Figure 3.  

The network attached storage was designed to host all the continous datasets for this period, 

approximately 6 TB’s.  Some sample acoustic signatures of various pulse trains are shown in Figure 3.  

Three cases were tested for functionality using a subset of data from the SBNMS, 2006-2010.  A 

dataset was constructed from portions of Table 2 that consisted of animal pulse trains and some noise 

events, Table 3. After running data at scale, additional noise events were added, this is referred to as 

the “eight-day set”, Table 4.  This set consisted of events from Table 3 plus additional noise samples; 

these proved critical for properly training and testing the ARS algorithm.  The system was tested to 

measure throughput performance running the ARS algorithm configured for pulse train detection.  For 

this study two versions were trained, one using exemplars from only Table 3 and the second version 

trained using Table 4.  In total, 2429 pulse trains were taged and labeled by experienced research 

analysts.  Exemplar sets consisted of haddock sounds, humpback social sounds, minke whale songs 

and an unknown signal type.  For the purpose of this report, individual species were grouped together, 

whereby the machine learning algorithms were designed to filter out noise events.  This work did not 

classify down to the species, which is a topic for future research.  Performance for the pulse train ASR 

algorithm was measured using various worker configurations, see Table 6.     

 

Various tools from Sedna were modified to allow the user to interact with the data in the diel plots, as 

explained in the illustration in Figure 5.  For this process a montage-like browser was interfaced to the 

diel plot, allowing the user to select events and display these using a postage stamp view of several 

spectrograms.  Tag labels are chosen for each event by a skilled researcher.  Results of the labeling 

operation are stored in the log files and data tables. Tag labels used in this work are shown in Table 5.  

A basic configuration of the ASR algorithm was used to extract likely energy, which are displayed as 

the diel
6
 plots to reveal daily and seasonal patterns of animal acoustic activity Figure 6.  It is worth 

mentioning that these figures do not contain all vocally active species identfied, rather, they represent 

detections of pulse trains based on human observation and the ASR algorithm.  

RESULTS 
 

In this effort it was determined
7
 that the cost tradeoff for using the HPC Hardware technology is 

justifieable if the researchers want to run all the data and perform complex processing.  Cost of the 

hardware will range anywhere from a full-up system (HPC rack) to multi core processor on a laptop.  

                                            
6 Diel plot, initial design courtesy, Melissa Soldevilla at NOAA Southeast Fisheries Science Center. 
7 All prices assume basic Mathworks license with parallel processing and other toolboxes. 
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Price range will vary, 84-core
8
 stand alone appliance, will start around $75k in hardware costs to 

around $2k for a laptop.  One major goal of this project is to investigate scalability and interoperability 

for advanced technologies.  The ideal configuration is to allow scaling using additional server units 

without changing software configurations.  This permits multiple computers to be added to the 

configuration, adjusting to the workload or data scale.  A custom, high performance, network  

attatched server (NAS) was also developed to provide a mechenism to investigate advanced 

technologies for online machine learning [12, 13] and data management; such as SWARM based 

computing.  Interoperability provides a systems construct that allows a variety of algorithms aimed at 

detection-classification to be used to process large datasets; for example, standard algoroithms (written 

in Matlab) were integrated into the HPC-ADA environment and successfully used on several projects.  

Interroperabilty also means that the developer does not have to make substantial modificaitons to their 

algorithms for integration.  Speed and scale is realized using an extremely parallel architecture, 

allowing for efficient and fast processing, which was the primary goal for this phase.  Our benchmark 

study shows a single desktop computer can execute a given dataset in 2 hours 55 minutes.  The same 

dataset, takes less than 5 minutes to run on the HPC-ADA machine.  Before this technology was 

implemented, it took roughly one month to process all the acoustic data for a single SBNMS 

deployment.  The high performance technology can run the entire 44 months of SBNMS in less than 8 

hours.   

 

Initial development with the ASR algorithm provided several insights to working with the data from 

2006-2010.  First, as shown by the results in Figure 6, the scale of data used to train the algorihtms is 

very important.  The training set will have a large impact on how well the automatic algorithm 

performs.  While this is common knowledge, the system, and tools, may limit ones ability to access the 

proper scale of data.  This work has allowed us to explore nearly 44 months of data, reducing many 

errors in an effort to provide accurate diel patterns for the animals of interest.  Second, the way the 

algorihtms represent the data is critical to the number of objects that need to be managed by the 

computer.  In some cases each pulse train event would generate 10-24 pulses. Likewise, seismic airgun 

surveys could generate millions of events over several weeks on an array of sensors, with each event 

capturing many features.  Thus, grouping signals is helpful for reducing the number of acoustic objects 

that are tracked in the system.  Third, detection classification over wide scales should be looked at in 

terms of all the acoustic objects that are captured in the desired analysis.  The original work was 

intended to look at only minke pulse trains.  After runing the algorithms on all the data, we 

successfully captured a variety of signals, including minke whale, humpback social sounds, haddock 

and cod fish sounds and a class of unidentified signals.  Fourth, standard tools may not be sufficient to 

use on data from the HPC environment.  Massive amounts of information required new data formats 

and new ways to access information.  Intelligent organization of the data, and a well thought out plan 

of how users interact, is key.  For example, initial manipulation of the diel plots,  Figure 6, proved that 

older data formats were inefficient, latency in visual displays was unacceptable.  New formats 

provided more efficient processing, data was displayed at near real time.  Lastly, the technology 

developed herein was made possible by properly utilizing higher level programming environements 

like Matlab.  In regards to HPC technology, it would be cost beneficial for the bioacoustic community 

to consider utilizing these platforms for collaborations, especially for running large scale datasets.  

Further attention should be placed on data standardization and tool development.  High performance 

technologies can be ideal for distributed problems and modeling efforts.   The research herein is one 

example, using HPC to understand diel plots for animal acoustics; other applications such as noise 

analysis and acoustic modeling can also be adapted to the HPC-ADA platform. 

                                            
8 For this research, a new Dell, hosting 64 processors was purchased for approximately $25k. 
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Figures  
 
 
 
 
 

(a) 

 
 

(b) 

 
 

 

(c) 

 

(d) 

 
 

Figure 1.  Photos of HPC-ADA DeLMA system.  (a) System currently hosted in a portable unit, which contains 

all equipment to run standalone, or racked into a larger stationary server. Currently the unit has 84 processors, 

over 200 GB of storage and custom designed NAS unit to host many large-scale datasets.  (b) View of the internal 

components, (HPC servers not currently in rack).  (c) Dell, hosting 64 processors in a single 2U chassis.  System 

architecture small enough to be located in a small rack, 192 GB of on board memory. (d) Rear facing HPC Dell 

server, 4 independent motherboards, hot swappable.  
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Figure 2.  Communication architecture for the distributed DCL system.  (left) The ADA computer contains a HEAD node, 

then a series of WORKER nodes, called accelerators.  Accelerators can be a single server or a multi-board HPC server.  

Worker nodes added for scalability.  External interfaces use a common path for data/control and one for audio.  (right) 

Audio data must be accessible on a fast storage connection and visible to the client and HPC-ADA machine; data/control 

can be on the same storage or exchanged through a local client connection.  This figure shows a custom network attached 

storage unit created for the research.  The NAS is high performance and has the ability to utilize smart processing to 

explore using advanced technologies such as SWARM computing. 

 

 

  

                                           (a)                                                                                               (b) 

  

                                           (c)                                                                                               (d) 

Figure 3.  Grouped events in the spectrogram using the ASR algorithm for marine mammals. (a) Minke Whale. (b) 

Fin Whale. (c) Sperm Whale. (d) Sei Whale.  Note: these acoustic events are not all in the SBNMS, shown as 

examples. 

 



 

9 

 
(a) 

 

(b)  

 

 

(c)  

 
Figure 4.  Figure shows three different configurations for parallel distributed computing referred to s Case 1, 2 and 3.  

This research uses the DeLMA software developed by Cornell University to realize each configuration.  An 

embarrassingly parallel model allows standard detection algorithms to be added to the system, each will taking 

advantage of the parallel-distributed workers. (a) Case 1:  Standalone mode, (b) Case 2: HPC-ADA console, serial, 

parallel or distributed and (c) Case 3: networked client-server model, opening up the HPC-ADA as a network appliance 

to other users. 
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(a)   Feature Distribution Plots 

 

 
(b)   Feature Scatter Plots 

 

 

 
 

(c)   Scatter plots having interoperability with signal 

spectrogram views. 
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(d) Diel plots having interoperability with signal-

spectrogram views. 

 

 

Figure 5.  Sample visualization tools used to allow the human operator to interact with the data.  (a) Feature distribution plot. 

(b) Feature scatter plot. (c) Scatter plots having interoperability with signal spectrogram views. (d) Diel plots having 

interoperability with diel plot views. 

 

                                            
9 Diel plot, initial design courtesy, Melissa Soldevilla at NOAA Southeast Fisheries Science Center. 
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a.)  Version-1, Pulse Train ASR algorithm developed using 

Table 3 exemplar data. 

 
b.)  Human ground truth for pulse train activity, separating 

animal from noise.  ASR alorithm version-1 was run first.  

 
c.)  ASR algorithm with training/testing data taken from 

Table 4, which includes exemplars from Table 3 with 

additional noise samples taken from all 4 years. 

 

 
d.)  Human ground truth for pulse train activity, separating 

different classes of pulse trains. 

 

 

Figure 6.  (a) Version 1 of the pulse train ASR algorithm, results looked good on a small dataset, but larger errors on 

continuous data.  (b) Human Ground Truth using version-1 data, (c) Pulse Train detection events from ASR algorithm using 

version-2, error rate is much lower than versio-1, by inspection (d) color coded diel plot showing separate species pulse train 

activity, (note: tag labels not shown for right diel plot, these are currently being submitted for publication). 
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Tables 
NOPP-DCL Integrated Research Team (IRT) 

Person Background Affiliation 

Project PI’s and Component Leaders 

Dr. Peter Dugan Engineering Scientist, PI and Project Technical Leader for Cornell 

BPR.  Signal processing, computational intelligence and high 

performance computing. 

Primary PI, Cornell University, Bioacoustics, Lead 

Scientist High Performance Computing and 

Recognition Team.   

Dr. Christopher 
Clark 

Senior Scientist, Co-PI and Lead Biologist for Cornell-BRP.   Expert 
in marine mammal science, signal processing, acoustics and data 

exploration. 

Co-PI, Cornell University, Director of Cornell 
Bioacoustics Research Program. 

Dr. Yann LeCun Senior Academic, Lead Scientist on convolutional neural networks 
and PI for NYU.  Specializing in machine learning, computer vision, 

mobile robotics, and computational neuroscience. 

PI, Silver Professor New York University, Courant 
Institute of Mathematical Sciences 

Dr. Sofie Van Parijs  Lead Biological Scientist and PI for NEFSC on the NOPP datasets 

and ecology associated with the Stellwagen Bank National Marine 
Sanctuary.  

PI, Lead Biologist Northeast Fisheries Science 

Center, Woods Hole. 

Biological Sciences / Ecology 

Dr. Aaron Rice Marine biology and fish ecology.  Lead Biologist for the Mass. Bay 

array geometries.  

Science Director, Cornell University, Bioacoustics 

Research Program.  

Denise Risch Marine Biologist working primarily on minke whale, fin, humpback 

and North Atlantic right whale acoustic ecology and ocean noise 

research. 

Senior Bio-acoustician, National Oceanic and 

Atmospheric Association,  

Northeast Fisheries Science Center 
Woods Hole, MA 

Dr. Anne Ward 

 

Human auditory perception for identifying cetaceans, specifically 

those located in the Mass. Bay area. 

Senior Research Analyst, Cornell University, 

Bioacoustics Research Program. 

Technology and Engineering Sciences 

Dr. Mark Fowler  

 

Senior Academic in Digital Signal Processing data compression and 

remote-distributed sensor theory/applications.  

Consultant, Senior Professor Binghamton University, 

Electrical and Computer Engineering. 

Dr. Harold Lewis Senior Academic in Systems Science, specializing in soft computing, 

machine learning and computational intelligence.  Applied math and 
human inference systems. 

Consultant, Senior Professor Binghamton University, 

Systems Science. 
 

Dr. Rosemary 

Paradis 

Neural network processing, hybrid systems and applied systems.  

Background in applied artificial intelligent and applied computer 
science. 

Consultant, Senior Scientist, Information Systems. 

Dimitri Ponirakis Noise Analysis and acoustics.  Specializing in applied computing and 

numerical recipes for integrating sound propagation and 

environmental factors. 

Lead Noise Analysis Engineer, Cornell University, 

Bioacoustics Research Program, High Performance 

Computing, Noise Analysis and Recognition Team.  

Marian Popescu, 

MS.  

Applied digital signal processing and numerical computing.  Applied 

user interface design and advanced computer science.  Design 

engineer for high performance computing architecture, hardware and 
software.   

Lead Performance Engineer, Cornell University, 

Bioacoustics Research Program, High Performance 

Computing and Recognition Team.   

Dr. John Zollweg Applied distributed computing and software algorithm design.  

Background in applied math and algorithm science. 

  

Senior Research Scientist, Cornell University 

Dr. Yu Shiu Digital signal processing for speech and music recognition.  

Algorithm design and statistical analysis and feature analysis.   

Post-Doctoral Associate, Cornell University, 

Bioacoustics Research Program, High Performance 

Computing and Recognition Team.   

Katie Vannicola, 
MS 

Signal processing and noise removal.  Applied speaker identification 
and speaker separation.   

Consultant, Application Engineer, Air Force Research 
Laboratories, Rome NY.  

Mohammad 

Pourhomayoun 

Digital signal processing, optimization and applied math. Cornell University, Bioacoustics Research Program, 

High Performance Computing and Recognition 
Team.   

Adam Mikolajczyk Applied computing systems, server hardware and computing 

systems.  Specializing in hardware development for large scale 
processing and high performance computing. 

Cornell University, Lab of Ornithology Computing 

Team. 

Table 1.  Integrated Research Team (IRT) assembled for the NOPP-DCL project. 

 



 

13 

 

 
Table 2.  Summary of the NOPP data used on this project.  Data contains nearly continuous 

information from 2006 to April 2010.  
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Table 3.  Subset of NOPP data used to test-train Version-1, pulse-train Acoustic 

Segmentation Recognition (ASR) Algorithm.   

 

 

 

 

 
Table 4.  Hand truth call table, summary of marine mammal activity for pulse train signals 

summarized from the test and training.  Sets 6, 7 and 8 contain only noise events taken across 

the entire SBNMS four year deployment.  Data above is comprised of the additional noise and 

exemplars in Table 3.  Data shown above provided a more robust set for buildingVersion-2 of 

the ASR algorithm. 
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Tag Tag Description 

Bac_1000 Possible minke whale, pulse train which could be made by 

minke but not definite 

Bac_3100 Definite minke whale 

Ano_3100 Noise 

Hdd_3100 Hard drive, device noise 

Mel_1000 Haddock 

Mno_1000 Moan pulse train (likely source: humpback) 

Mno_2000 Humpback song 

Egl_1000 Right whale 

Lpt_1000 Low frequency pulse train (source: unknown) 

Mno_3000 Pulse train made by humpback 

Unid_1000 Unidentified source 

Table 5.  Tag label and description. 
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Table 6.  Example, Detector-Classifier runtime performance.  Comparing various 

worker configurations when running the pulse train detector used the animal vs. noise 

example.  Results gathered by running on (1) standard desktop computer, Dell 8500, (2) 

HPC-ADA server.  

                                            
10 64 core, projected results using the DeLMA cloud computing HPC architecture, using Dell Power Edge 610T Server, the new DELL 

c6220 4 Node Server, estimated speeds are expected to be less than 5 minutes, since the processors host bus architecture is faster than the 

PE-610T server.   
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IMPACT/APPLICATIONS 
 

Currently the authors do not know of anyone that has successfully integrated HPC technology for 

doing advanced detection-classificaiton for marine mammals and passive acoustic archival data using a 

multiple configuration (see Case 1, 2, and 3), Figure 4.  These onfigurations may serve as a starting 

point for various reseach and development envornments, such as at Naval Processing Labs or other 

university centers that wish to host HPC technologies for passive acoustic research. 

RELATED PROJECTS 
 
The HPC-ADA computer was developed using pre-spending funding available from ONR.   The initial 

build, test and development of the DeLMA software occurred duing October to November, 2011.  The 

HPC-ADA hardware and distributed software was erected during the project start, June, 2012.  

Between October 2011 to June 2012, several projects were executed using this technology.  We used a 

spiral development process, which consisted of a test, build, integration and execution cycle.  This 

process allowed us to execute on various projects while the system was being developed (Table 7).  

Integration of this work consisted of adapting various detector classifiers that were currently being run 

using other MATLAB tools (xbat and isRAT) to the DeLMA software.  During this cycle, we had two 

multi-core servers available to perform testing and runtime.   

 
Project Amount of Data 

Processed, 

Including Multi-

Channel Data. 

 

# 

Channels 

Sample 

Rate 

# Cores 

Used for 

Processing 

Type of Processing 

Excellerate ~ 150 days / 0.63 

TB 

19 2 kHz 12 Massechessets Bay, standard north atlantic right 

whale NARW detectors and fin whale 

detectors.  Detector migrated from existing 

tools.  NARW 

GoMex  

 

~ 4.3 years / 2.6 

TB 

1 20 kHz 24 Gulf of Mexico, developed sperm whale 

detector.  Work is not published and in preperation. 

CAIRN  ~ 60 days / 0.7 

TB 

5 16 kHz 24 Baffin Bay, Seismic detection and feature 

extraction.  System managed over 8 milllion feature 

points for auto detection and noise analysis.  

NOPP – DCL  

 

(this project 

see Table 2) 

~3.5 years/ 6 TB 1-10 2kHz, 

10kHz 

38-64 Stellwagen Bank National Marine Sanctuary, 

development of pulse train detection, animal vs noise 

(see example in this report).  Minke, Humpback 

(social sounds), Haddock,  Fin detection, Right Whale 

Detection. 

Mass CEC 

 

~ 180 days / 0.4 

TB 

6 2kHz 12 Massechessets Bay, run NARW, Fin and Minke 

whale detectors.  

Gulf of Maine 

 

~3 years / 0.6 TB 1 2kHz 12 Maine area, run NARW, Fin and Minke whale 

detectors.  

 

Table 7.  Projects that have used a combination of the DeLMA software and the HPC-ADA hardware during the 

spiral development phases. 
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